3.4.73 \(\int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [373]

3.4.73.1 Optimal result
3.4.73.2 Mathematica [B] (warning: unable to verify)
3.4.73.3 Rubi [A] (verified)
3.4.73.4 Maple [B] (verified)
3.4.73.5 Fricas [F]
3.4.73.6 Sympy [F]
3.4.73.7 Maxima [F]
3.4.73.8 Giac [F]
3.4.73.9 Mupad [F(-1)]

3.4.73.1 Optimal result

Integrand size = 31, antiderivative size = 210 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} B \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d} \]

output
-2*(a-b)*B*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/ 
(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c) 
)/(a-b))^(1/2)/b^2/d+2*(A-B)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/( 
a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2) 
*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d
 
3.4.73.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2296\) vs. \(2(210)=420\).

Time = 24.14 (sec) , antiderivative size = 2296, normalized size of antiderivative = 10.93 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Result too large to show} \]

input
Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x]],x]
 
output
(2*B*(b + a*Cos[c + d*x])*(A + B*Sec[c + d*x])*Sin[c + d*x])/(b*d*(B + A*C 
os[c + d*x])*Sqrt[a + b*Sec[c + d*x]]) - (2*(-(B/(Sqrt[b + a*Cos[c + d*x]] 
*Sqrt[Sec[c + d*x]])) + (A*Sqrt[Sec[c + d*x]])/Sqrt[b + a*Cos[c + d*x]] - 
(a*B*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) - (a*B*Cos[2*(c + d* 
x)]*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(c + d*x)/2 
]^2*Sec[c + d*x]]*(A + B*Sec[c + d*x])*(2*(a + b)*B*Sqrt[Cos[c + d*x]/(1 + 
 Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*El 
lipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(A + B)*Sqrt[Cos[ 
c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c 
 + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + B*Cos[c 
+ d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(b*d*(B 
+ A*Cos[c + d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Sec[c + d*x]]*Sqrt[a + b*S 
ec[c + d*x]]*(-((a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*( 
a + b)*B*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/( 
(a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/( 
a + b)] - 2*b*(A + B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Co 
s[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2 
]], (a - b)/(a + b)] + B*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2 
]^2*Tan[(c + d*x)/2]))/(b*(b + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2] 
^2])) + (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a +...
 
3.4.73.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4493

\(\displaystyle (A-B) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+B \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle (A-B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4319

\(\displaystyle B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {2 B (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}\)

input
Int[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x]],x]
 
output
(-2*(a - b)*Sqrt[a + b]*B*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + 
 d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)] 
*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) + (2*Sqrt[a + b]*(A - B) 
*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + 
 b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d 
*x]))/(a - b))])/(b*d)
 

3.4.73.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 
3.4.73.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(934\) vs. \(2(192)=384\).

Time = 21.76 (sec) , antiderivative size = 935, normalized size of antiderivative = 4.45

method result size
parts \(\text {Expression too large to display}\) \(935\)
default \(\text {Expression too large to display}\) \(1082\)

input
int(sec(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVER 
BOSE)
 
output
-2*A/d*(cos(d*x+c)+1)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b) 
)^(1/2))*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))-2*B/d/b*(EllipticF(cot(d* 
x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/ 
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)^2-EllipticE(cot( 
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*( 
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)^2-EllipticE(co 
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)^2+2*Elliptic 
F(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)-2*Ellipt 
icE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)-2*Elli 
pticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)+Elli 
pticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b-EllipticE(cot(d 
*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1 
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a-EllipticE(cot(d*x+c)-csc(d 
*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(...
 
3.4.73.5 Fricas [F]

\[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algorithm= 
"fricas")
 
output
integral((B*sec(d*x + c)^2 + A*sec(d*x + c))/sqrt(b*sec(d*x + c) + a), x)
 
3.4.73.6 Sympy [F]

\[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral((A + B*sec(c + d*x))*sec(c + d*x)/sqrt(a + b*sec(c + d*x)), x)
 
3.4.73.7 Maxima [F]

\[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algorithm= 
"maxima")
 
output
integrate((B*sec(d*x + c) + A)*sec(d*x + c)/sqrt(b*sec(d*x + c) + a), x)
 
3.4.73.8 Giac [F]

\[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algorithm= 
"giac")
 
output
integrate((B*sec(d*x + c) + A)*sec(d*x + c)/sqrt(b*sec(d*x + c) + a), x)
 
3.4.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\cos \left (c+d\,x\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((A + B/cos(c + d*x))/(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2)),x)
 
output
int((A + B/cos(c + d*x))/(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2)), x)